Team and Opponent Stats Table Team | G | MP | FG | FGA | FG% | 3P | 3PA | 3P% | 2P | 2PA | 2P% | FT | FTA | FT% | ORB | DRB | TRB | AST | STL | BLK | TOV | PF | PTS |
Team | 34 | 6800 | 256 | 779 | .329 | 256 | 779 | .329 | 0 | 0 | | 473 | 644 | .734 | 335 | 735 | 1070 | 577 | 248 | 54 | 574 | 742 | 2489 |
Opp | 34 | 6800 | 293 | 786 | .373 | 293 | 786 | .373 | 0 | 0 | | 562 | 740 | .759 | 321 | 778 | 1099 | 651 | 281 | 97 | 525 | 681 | 2751 |
Per Game Table Player | G | MP | FG | FGA | FG% | 3P | 3PA | 3P% | 2P | 2PA | 2P% | FT | FTA | FT% | ORB | DRB | TRB | AST | STL | BLK | TOV | PF | PTS |
Benoit Mangin | 33 | 30.2 | 3.3 | 6.8 | .487 | 1.5 | 3.6 | .429 | 1.8 | 3.2 | .552 | 2.4 | 3.1 | .772 | 0.4 | 1.5 | 1.9 | 5.2 | 0.8 | 0.0 | 3.0 | 2.5 | 10.5 |
Boris Dallo | 31 | 24.8 | 3.1 | 8.4 | .371 | 0.8 | 3.5 | .220 | 2.3 | 4.8 | .480 | 1.2 | 1.8 | .643 | 0.9 | 2.8 | 3.7 | 3.0 | 1.0 | 0.1 | 2.1 | 1.2 | 8.1 |
Charles Abouo | 33 | 19.7 | 2.7 | 5.6 | .478 | 1.1 | 2.9 | .361 | 1.6 | 2.7 | .607 | 0.9 | 1.0 | .912 | 0.8 | 2.2 | 3.0 | 1.3 | 0.8 | 0.1 | 1.5 | 2.3 | 7.4 |
Cyrille Eliezer-Vanerot | 24 | 14.0 | 1.5 | 3.3 | .462 | 0.6 | 1.7 | .341 | 0.9 | 1.5 | .595 | 0.7 | 1.1 | .593 | 0.2 | 1.7 | 1.9 | 0.3 | 0.6 | 0.4 | 0.8 | 2.3 | 4.3 |
Damien Nseke Ebele | 4 | 3.8 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.5 | 0.5 | 1.000 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 |
Edgar Wansi Fonkua | 1 | 1.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Georgi Joseph | 32 | 20.4 | 1.8 | 3.6 | .513 | 0.0 | 0.1 | .000 | 1.8 | 3.5 | .532 | 0.8 | 1.4 | .600 | 2.6 | 2.5 | 5.1 | 2.0 | 0.6 | 0.2 | 1.8 | 3.2 | 4.5 |
Jamar Abrams | 7 | 25.3 | 3.3 | 7.9 | .418 | 1.9 | 4.3 | .433 | 1.4 | 3.6 | .400 | 0.4 | 0.6 | .750 | 1.3 | 3.1 | 4.4 | 0.9 | 0.4 | 0.3 | 0.7 | 3.0 | 8.9 |
Johan Passave-Ducteil | 34 | 19.3 | 2.9 | 5.1 | .572 | 0.0 | 0.2 | .125 | 2.9 | 4.9 | .594 | 2.6 | 3.6 | .727 | 1.1 | 2.2 | 3.4 | 1.3 | 0.7 | 0.4 | 1.9 | 3.1 | 8.4 |
Mathieu Wojciechowski | 29 | 16.9 | 2.5 | 5.3 | .474 | 0.5 | 2.0 | .259 | 2.0 | 3.3 | .604 | 0.9 | 1.4 | .659 | 1.1 | 2.1 | 3.3 | 1.0 | 0.9 | 0.1 | 0.8 | 1.6 | 6.5 |
Mehdy Ngouama | 34 | 20.2 | 3.1 | 7.1 | .436 | 0.7 | 2.4 | .277 | 2.4 | 4.7 | .519 | 2.1 | 2.8 | .766 | 0.3 | 1.8 | 2.1 | 1.8 | 1.1 | 0.2 | 2.3 | 2.4 | 9.0 |
Michael Umeh | 27 | 16.7 | 2.2 | 5.6 | .397 | 1.5 | 3.7 | .396 | 0.7 | 1.9 | .400 | 0.2 | 0.2 | .833 | 0.3 | 1.1 | 1.4 | 0.6 | 0.6 | 0.1 | 0.9 | 1.3 | 6.1 |
Mikyle Mcintosh | 31 | 28.6 | 4.1 | 9.6 | .421 | 1.3 | 4.0 | .312 | 2.8 | 5.6 | .500 | 2.7 | 3.5 | .771 | 0.8 | 3.4 | 4.1 | 1.4 | 0.8 | 0.2 | 1.8 | 2.9 | 12.1 |
Nadir Hifi | 3 | 5.7 | 0.3 | 1.3 | .250 | 0.3 | 1.0 | .333 | 0.0 | 0.3 | .000 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.7 | 1.0 |
Theo Magrit | 3 | 2.0 | 0.0 | 0.3 | .000 | 0.0 | 0.3 | .000 | 0.0 | 0.0 | | 1.3 | 1.3 | 1.000 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.3 | 0.0 | 1.3 |
Wesley Gordon | 2 | 5.5 | 1.5 | 3.0 | .500 | 0.0 | 0.0 | | 1.5 | 3.0 | .500 | 0.0 | 0.0 | | 1.5 | 0.5 | 2.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.5 | 3.0 |
Per 36 Minutes Table Player | G | MP | FG | FGA | FG% | 3P | 3PA | 3P% | 2P | 2PA | 2P% | FT | FTA | FT% | ORB | DRB | TRB | AST | STL | BLK | TOV | PF | PTS |
Benoit Mangin | 33 | 995 | 3.9 | 8.1 | .487 | 1.8 | 4.3 | .429 | 2.1 | 3.8 | .552 | 2.8 | 3.7 | .772 | 0.5 | 1.8 | 2.3 | 6.2 | 1.0 | 0.0 | 3.5 | 3.0 | 12.6 |
Boris Dallo | 31 | 769 | 4.5 | 12.1 | .371 | 1.1 | 5.1 | .220 | 3.4 | 7.0 | .480 | 1.7 | 2.6 | .643 | 1.4 | 4.1 | 5.4 | 4.3 | 1.5 | 0.1 | 3.1 | 1.7 | 11.8 |
Charles Abouo | 33 | 651 | 4.9 | 10.3 | .478 | 1.9 | 5.4 | .361 | 3.0 | 4.9 | .607 | 1.7 | 1.9 | .912 | 1.4 | 4.0 | 5.4 | 2.4 | 1.5 | 0.1 | 2.8 | 4.3 | 13.5 |
Cyrille Eliezer-Vanerot | 24 | 337 | 3.8 | 8.3 | .462 | 1.5 | 4.4 | .341 | 2.4 | 4.0 | .595 | 1.7 | 2.9 | .593 | 0.5 | 4.4 | 4.9 | 0.9 | 1.5 | 1.0 | 1.9 | 5.9 | 10.9 |
Damien Nseke Ebele | 4 | 15 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 4.8 | 4.8 | 1.000 | 0.0 | 2.4 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 4.8 | 4.8 |
Edgar Wansi Fonkua | 1 | 1 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Georgi Joseph | 32 | 652 | 3.3 | 6.3 | .513 | 0.0 | 0.2 | .000 | 3.3 | 6.1 | .532 | 1.5 | 2.5 | .600 | 4.6 | 4.4 | 9.0 | 3.5 | 1.0 | 0.4 | 3.1 | 5.6 | 8.0 |
Jamar Abrams | 7 | 177 | 4.7 | 11.2 | .418 | 2.6 | 6.1 | .433 | 2.0 | 5.1 | .400 | 0.6 | 0.8 | .750 | 1.8 | 4.5 | 6.3 | 1.2 | 0.6 | 0.4 | 1.0 | 4.3 | 12.6 |
Johan Passave-Ducteil | 34 | 656 | 5.4 | 9.5 | .572 | 0.1 | 0.4 | .125 | 5.4 | 9.1 | .594 | 4.8 | 6.6 | .727 | 2.1 | 4.1 | 6.3 | 2.4 | 1.4 | 0.7 | 3.6 | 5.8 | 15.8 |
Mathieu Wojciechowski | 29 | 491 | 5.4 | 11.3 | .474 | 1.1 | 4.3 | .259 | 4.3 | 7.0 | .604 | 2.0 | 3.0 | .659 | 2.4 | 4.5 | 7.0 | 2.1 | 1.8 | 0.2 | 1.7 | 3.4 | 13.8 |
Mehdy Ngouama | 34 | 686 | 5.6 | 12.8 | .436 | 1.2 | 4.4 | .277 | 4.4 | 8.4 | .519 | 3.8 | 4.9 | .766 | 0.6 | 3.1 | 3.7 | 3.2 | 1.9 | 0.4 | 4.1 | 4.2 | 16.1 |
Michael Umeh | 27 | 450 | 4.8 | 12.1 | .397 | 3.2 | 8.1 | .396 | 1.6 | 4.0 | .400 | 0.4 | 0.5 | .833 | 0.7 | 2.3 | 3.0 | 1.4 | 1.3 | 0.2 | 1.9 | 2.8 | 13.2 |
Mikyle Mcintosh | 31 | 887 | 5.1 | 12.1 | .421 | 1.6 | 5.1 | .312 | 3.5 | 7.1 | .500 | 3.4 | 4.4 | .771 | 1.0 | 4.2 | 5.2 | 1.8 | 1.1 | 0.2 | 2.2 | 3.6 | 15.2 |
Nadir Hifi | 3 | 17 | 2.1 | 8.5 | .250 | 2.1 | 6.4 | .333 | 0.0 | 2.1 | .000 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.5 | 4.2 | 6.4 |
Theo Magrit | 3 | 6 | 0.0 | 6.0 | .000 | 0.0 | 6.0 | .000 | 0.0 | 0.0 | | 24.0 | 24.0 | 1.000 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 6.0 | 0.0 | 24.0 |
Wesley Gordon | 2 | 11 | 9.8 | 19.6 | .500 | 0.0 | 0.0 | | 9.8 | 19.6 | .500 | 0.0 | 0.0 | | 9.8 | 3.3 | 13.1 | 0.0 | 0.0 | 0.0 | 6.5 | 3.3 | 19.6 |
We're Social...for Statheads
Every Sports Reference Social Media Account
Site Last Updated: Monday, November 18, 7:01AM
Question, Comment, Feedback, or Correction?
Subscribe to our Free Email Newsletter
Subscribe to Stathead Basketball: Get your first month FREE
Your All-Access Ticket to the Basketball Reference Database
Do you have a sports website? Or write about sports? We have tools and resources that can help you use sports data. Find out more.