Team and Opponent Stats Table Team | G | MP | FG | FGA | FG% | 3P | 3PA | 3P% | 2P | 2PA | 2P% | FT | FTA | FT% | ORB | DRB | TRB | AST | STL | BLK | TOV | PF | PTS |
Team | 20 | 4027 | 538 | 1187 | .453 | 164 | 480 | .342 | 374 | 707 | .529 | 327 | 444 | .736 | 205 | 444 | 649 | 267 | 149 | 54 | 285 | 403 | 1567 |
Opp | 20 | 4027 | | | | | | | | | | | | | | | | | | | | | 1606 |
Per Game Table Player | G | MP | FG | FGA | FG% | 3P | 3PA | 3P% | 2P | 2PA | 2P% | FT | FTA | FT% | ORB | DRB | TRB | AST | STL | BLK | TOV | PF | PTS |
Arturas Milaknis | 2 | 2.5 | 0.5 | 1.0 | .500 | 0.0 | 0.5 | .000 | 0.5 | 0.5 | 1.000 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
Dainius Salenga | 17 | 12.6 | 1.2 | 2.7 | .457 | 0.4 | 1.2 | .350 | 0.8 | 1.5 | .538 | 0.3 | 0.5 | .625 | 0.6 | 1.4 | 1.9 | 0.3 | 0.5 | 0.1 | 0.4 | 0.8 | 3.2 |
Damir Markota | 6 | 13.3 | 1.3 | 3.8 | .348 | 0.3 | 1.7 | .200 | 1.0 | 2.2 | .462 | 0.5 | 0.5 | 1.000 | 0.3 | 1.7 | 2.0 | 0.8 | 0.3 | 0.2 | 1.2 | 1.2 | 3.5 |
DeJuan Collins | 20 | 30.0 | 3.3 | 8.6 | .384 | 0.6 | 2.9 | .211 | 2.7 | 5.8 | .470 | 3.7 | 4.4 | .830 | 0.8 | 3.1 | 3.9 | 5.4 | 1.3 | 0.0 | 2.8 | 1.9 | 10.9 |
Donatas Motiejūnas | 3 | 7.0 | 0.3 | 1.7 | .200 | 0.0 | 0.7 | .000 | 0.3 | 1.0 | .333 | 0.7 | 0.7 | 1.000 | 1.3 | 1.3 | 2.7 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.3 |
Eurelijus Zukauskas | 19 | 18.2 | 1.5 | 3.1 | .475 | 0.0 | 0.0 | | 1.5 | 3.1 | .475 | 0.6 | 1.8 | .353 | 1.3 | 3.1 | 4.4 | 0.8 | 0.3 | 1.4 | 1.4 | 2.3 | 3.6 |
Goran Jurak | 19 | 17.3 | 2.5 | 5.0 | .505 | 0.4 | 1.7 | .250 | 2.1 | 3.3 | .635 | 1.4 | 2.2 | .634 | 1.7 | 3.4 | 5.2 | 0.7 | 0.8 | 0.1 | 1.3 | 2.8 | 6.8 |
Jonas Maciulis | 20 | 26.9 | 4.2 | 9.0 | .469 | 1.5 | 3.9 | .377 | 2.8 | 5.1 | .539 | 2.1 | 3.1 | .689 | 1.4 | 2.1 | 3.5 | 0.7 | 1.5 | 0.1 | 1.9 | 3.3 | 12.0 |
Mamadou N'Diaye | 6 | 25.8 | 3.2 | 6.5 | .487 | 0.0 | 0.0 | | 3.2 | 6.5 | .487 | 2.2 | 3.8 | .565 | 2.8 | 4.2 | 7.0 | 0.7 | 1.2 | 1.0 | 1.8 | 2.7 | 8.5 |
Mantas Kalnietis | 16 | 7.3 | 0.6 | 1.8 | .357 | 0.1 | 0.8 | .167 | 0.5 | 1.0 | .500 | 0.3 | 0.6 | .444 | 0.1 | 0.6 | 0.7 | 0.8 | 0.1 | 0.0 | 0.4 | 0.6 | 1.6 |
Marcus Brown | 20 | 29.9 | 4.5 | 9.5 | .474 | 2.6 | 6.1 | .418 | 2.0 | 3.4 | .574 | 2.9 | 3.2 | .906 | 0.7 | 1.8 | 2.4 | 1.4 | 0.6 | 0.2 | 1.8 | 2.3 | 14.5 |
Marko Popovic | 20 | 21.6 | 3.5 | 8.1 | .432 | 2.1 | 5.3 | .396 | 1.4 | 2.8 | .500 | 2.6 | 3.1 | .839 | 0.4 | 1.0 | 1.4 | 2.0 | 1.0 | 0.0 | 1.9 | 1.7 | 11.7 |
Michael Bradley | 7 | 16.7 | 3.0 | 5.7 | .525 | 0.0 | 0.6 | .000 | 3.0 | 5.1 | .583 | 1.0 | 1.1 | .875 | 1.7 | 3.1 | 4.9 | 0.7 | 0.1 | 0.4 | 1.1 | 2.6 | 7.0 |
Paulius Jankunas | 20 | 21.6 | 3.4 | 6.7 | .504 | 0.6 | 1.7 | .324 | 2.8 | 5.0 | .566 | 1.4 | 1.8 | .771 | 1.7 | 3.2 | 4.9 | 0.8 | 0.9 | 0.4 | 1.0 | 2.7 | 8.6 |
Tanoka Beard | 2 | 19.5 | 2.0 | 6.5 | .308 | 0.0 | 1.0 | .000 | 2.0 | 5.5 | .364 | 1.5 | 3.0 | .500 | 2.0 | 2.0 | 4.0 | 0.5 | 1.5 | 0.5 | 2.5 | 1.5 | 5.5 |
Vilmantas Dilys | 2 | 2.0 | 0.0 | 0.5 | .000 | 0.0 | 0.5 | .000 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Per 36 Minutes Table Player | G | MP | FG | FGA | FG% | 3P | 3PA | 3P% | 2P | 2PA | 2P% | FT | FTA | FT% | ORB | DRB | TRB | AST | STL | BLK | TOV | PF | PTS |
Arturas Milaknis | 2 | 5 | 7.2 | 14.4 | .500 | 0.0 | 7.2 | .000 | 7.2 | 7.2 | 1.000 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.4 |
Dainius Salenga | 17 | 214 | 3.5 | 7.7 | .457 | 1.2 | 3.4 | .350 | 2.4 | 4.4 | .538 | 0.8 | 1.3 | .625 | 1.7 | 3.9 | 5.6 | 0.8 | 1.5 | 0.3 | 1.0 | 2.4 | 9.1 |
Damir Markota | 6 | 80 | 3.6 | 10.4 | .348 | 0.9 | 4.5 | .200 | 2.7 | 5.9 | .462 | 1.4 | 1.4 | 1.000 | 0.9 | 4.5 | 5.4 | 2.3 | 0.9 | 0.5 | 3.2 | 3.2 | 9.5 |
DeJuan Collins | 20 | 600 | 4.0 | 10.3 | .384 | 0.7 | 3.4 | .211 | 3.2 | 6.9 | .470 | 4.4 | 5.3 | .830 | 0.9 | 3.7 | 4.6 | 6.4 | 1.5 | 0.0 | 3.4 | 2.3 | 13.0 |
Donatas Motiejūnas | 3 | 21 | 1.7 | 8.6 | .200 | 0.0 | 3.4 | .000 | 1.7 | 5.1 | .333 | 3.4 | 3.4 | 1.000 | 6.9 | 6.9 | 13.7 | 0.0 | 0.0 | 0.0 | 5.1 | 5.1 | 6.9 |
Eurelijus Zukauskas | 19 | 346 | 2.9 | 6.1 | .475 | 0.0 | 0.0 | | 2.9 | 6.1 | .475 | 1.2 | 3.5 | .353 | 2.6 | 6.1 | 8.7 | 1.7 | 0.6 | 2.8 | 2.8 | 4.5 | 7.1 |
Goran Jurak | 19 | 329 | 5.3 | 10.4 | .505 | 0.9 | 3.5 | .250 | 4.4 | 6.9 | .635 | 2.8 | 4.5 | .634 | 3.6 | 7.1 | 10.7 | 1.5 | 1.6 | 0.1 | 2.7 | 5.9 | 14.2 |
Jonas Maciulis | 20 | 538 | 5.6 | 12.0 | .469 | 1.9 | 5.2 | .377 | 3.7 | 6.8 | .539 | 2.8 | 4.1 | .689 | 1.8 | 2.8 | 4.6 | 0.9 | 2.0 | 0.1 | 2.5 | 4.3 | 16.0 |
Mamadou N'Diaye | 6 | 155 | 4.4 | 9.1 | .487 | 0.0 | 0.0 | | 4.4 | 9.1 | .487 | 3.0 | 5.3 | .565 | 3.9 | 5.8 | 9.8 | 0.9 | 1.6 | 1.4 | 2.6 | 3.7 | 11.8 |
Mantas Kalnietis | 16 | 117 | 3.1 | 8.6 | .357 | 0.6 | 3.7 | .167 | 2.5 | 4.9 | .500 | 1.2 | 2.8 | .444 | 0.6 | 2.8 | 3.4 | 4.0 | 0.6 | 0.0 | 1.8 | 2.8 | 8.0 |
Marcus Brown | 20 | 598 | 5.4 | 11.4 | .474 | 3.1 | 7.3 | .418 | 2.3 | 4.1 | .574 | 3.5 | 3.9 | .906 | 0.8 | 2.1 | 2.9 | 1.6 | 0.7 | 0.2 | 2.2 | 2.7 | 17.4 |
Marko Popovic | 20 | 432 | 5.8 | 13.5 | .432 | 3.5 | 8.8 | .396 | 2.3 | 4.7 | .500 | 4.3 | 5.2 | .839 | 0.6 | 1.7 | 2.3 | 3.3 | 1.7 | 0.0 | 3.2 | 2.8 | 19.5 |
Michael Bradley | 7 | 117 | 6.5 | 12.3 | .525 | 0.0 | 1.2 | .000 | 6.5 | 11.1 | .583 | 2.2 | 2.5 | .875 | 3.7 | 6.8 | 10.5 | 1.5 | 0.3 | 0.9 | 2.5 | 5.5 | 15.1 |
Paulius Jankunas | 20 | 432 | 5.6 | 11.1 | .504 | 0.9 | 2.8 | .324 | 4.7 | 8.2 | .566 | 2.3 | 2.9 | .771 | 2.8 | 5.2 | 8.1 | 1.3 | 1.4 | 0.7 | 1.6 | 4.5 | 14.3 |
Tanoka Beard | 2 | 39 | 3.7 | 12.0 | .308 | 0.0 | 1.8 | .000 | 3.7 | 10.2 | .364 | 2.8 | 5.5 | .500 | 3.7 | 3.7 | 7.4 | 0.9 | 2.8 | 0.9 | 4.6 | 2.8 | 10.2 |
Vilmantas Dilys | 2 | 4 | 0.0 | 9.0 | .000 | 0.0 | 9.0 | .000 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 9.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
We're Social...for Statheads
Every Sports Reference Social Media Account
Site Last Updated: Thursday, January 30, 2:37PM
Question, Comment, Feedback, or Correction?
Subscribe to our Free Email Newsletter
Subscribe to Stathead Basketball: Get your first month FREE
Your All-Access Ticket to the Basketball Reference Database
Do you have a sports website? Or write about sports? We have tools and resources that can help you use sports data. Find out more.